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For a body immersed in a high-enthalpy stream the flow of heat along generators can be 
an efficient method of lowering the surface temperature for regions of maximum heat flux, as 
has been shown for steady conditions in [i, 2]. Another method of thermal protection of 
structures is blowing of coolant gas, which reduces the surface heat flux, and where heat is re- 
jected during filtering in the pores. There is interest in investigating the simultaneous 
action of these factors on the distribution of temperature in the gas and condensed phases 
and of the heat flux to the surface of the immersed body. 

This paper examines the solution of the heating problem in supersonic flow over a blunted 
sphere-cone, allowing for different flow regimes in the boundary layer and surface blowing 
of gas from the spherical region. We shall study the influence of the flow regimes and the 
mass flux of blown gas, the body geometry, and the thermophysical properties of the material 
on the characteristics of the unsteady coupled heat and mass transfer. 

i. In accordance with [3, 4] we shall seek the characteristics of the coupled heat and 
mass transfer by solving the system of equations describing the variation of mean values of 
quantities in the boundary layer, the energy conservation equation for the porous spherical 
part of the body, and the unsteady heat conduction equation for the conical part. 

In terms of Dorodnitsyn-Lees variables for the gas phase in the natural coordinate sys- 
tem fixed in the outer body surface, the system of equations in dimensionless variables has 
the form 
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For the porous spherical surface (0 <_ $ ! gz), assuming the process of filtering the 
blown gas is one-dimensional in the direction normal to the surface, we have 
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For the conical part of the body we have 

(1.4) 

We write the boundary and initial conditions as 
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Here u = u/ue, g = H/He, 8 = T/Te0 are, respectively the dimensionless velocity, the total 
enthalpy and the surface temperature; n~ is a coordinate referenced to the blunting radius 
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In the general case of transition of laminar boundary 

layer flow to turbulent we have 

X 
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In Eq. (1.6) the dimensionless flux q~(~,0) is linked to the dimensions as follows: qw = 

I~ a~ VN7 
Pr 7n ~ pe0umHe. The subscripts e, e0, and w refer to values at the outer edge of the boundary 

layer, at the outer edge at the stagnation point, and on the boundary surface n I = 0, respec- 
tively; wl refers to conditons on the inside of the body wall of thickness L/RN; 1 and 2 refer 
to the characteristics of the condensed phase on the spherical and conical parts; * to charac- 
teristics of the material; g to the gas phase of the porous spherical shell; and T and i to 
characteristics of turbulent transfer and initial conditions. 

To describe the turbulent flow we apply the two-layer turbulent boundary layer model [5]. 
In the inner region the turbulent viscosity is found from the Prandtl formula with the Van 
Driest-Sebeci damping factor, accounting for the pressure gradient and the surface blowing. 
In the outer region we use the Clauser formula. The longitudinal mixing length G was taken 
from [6]. A detailed account of the turbulence model used has been given in [7], where the 
authors compared theory and experiment, confirming that this turbulent model may be used. 
We note that at the computed Reynolds numbers the heat flux data coincide for both models of 
the turbulent viscous shock layer and boundary layer. 

As follows from the statement of the problem, the governing parameters are the body 
geometry, the Mach number M and the Reynolds numbers Re, 7, the initial temperature 0 w and 
the dimensionless mass flow~rate law (pv)Q($). For constant and identical thermophysical 
characteristics of the material of the porous blunted and the conical sections, to the above 
we add parameters describing the heat and mass fluxes to and from the body: the matching 
parameter S =~fR-ePrle0/~,,' defining the ratio of convective to conduction heat flux, the 
parameter ~ expressing the ratio of the radiative to conduction heat flux, and the relative 
wall thickness a/R N. 

In the numerical integration we took Pr = 0.72, Pr T = i, and the molecular viscosity 
was found from the Sutherland law. The numerical integration of the boundary layer system 
of equations was carried out with a difference scheme obtained with the aid of the iteration- 
interpolation method of [8]. The two-dimensional equations (1.3) and (1.4) were computed 
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by the splitting method of [9], combined with the method of [8]. For the turbulent flow in 
the boundary layer we developed combined difference shcemes, matching the desired character- 
istics in the laminar sublayer and the turbulent core, and accounting for the variation of 
~T across the boundary layer. This allowed us to increase the rate of convergence of the 
iteration process and to carry through the computations for any values of Re at various val- 
ues of the flow rate of blown gas from the body surface. 

2. We now consider the results of solving the boundary problem of Eq. (1.1)-(1.9). 
We computed the flow over a spherically blunted cone of semi-opening angle 5 ~ for governing 
parameters corresponding to the wind tunnel test conditions. The model geometry, the stagna- 
tion point pressure, and the law of blown gas flow rate from the blunted surface corresponded 
to the data of [i0]: M = 5, R N = 0.0508 m, Pc0 = 3'125'105 N/m2, (Ov)w(~) = const = 1.626 
kg/(m2.sec). The computations, performed for Te0 = 525 K for conditions corresponding to an 
initial isothermal wall temperature of T w = Ti = 288 K, showed satisfactory agreement between 
the theory and the experimental results [7]. In this case, to investigate the unsteady heat- 
ing process Te0 was assumed to be 1500 K, the thermophysical properties of the wall material 
were assumed to be constant, the wall was assumed to be made of copper, a good conductor, 
and the nonconducting wall was assumed to have the properties of asbestos. The emissivity 
was taken as E = 0.7, the basic computations were performed for a thin wall (L/R N = 0.0425), 
for which the maximum temperature was reached. 

Figure 1 shows, for the laminar flow case, the distribution of heat flux and surface 
temperature for flow over an inpermeable thin wall (solid curves) and with blowing (broken 
curves) at different times. Lines 1-3 correspond to material with high thermal conductivity 
(S = 0.15) at times t = 0, 30, 210 sec, and curves i'-3' were obtained for a nonconducting 
wall (S = 470) for t = 0, !, 60 sec. Curves 1 and i' coincide at the initial time for Ti = 
288 K. The computations were made until the end of the steady-state regime of the process 
and additional autonomous calculations were made of the boundary problem of determining the 
equilibrium radiative surface temperature Twp shown by dot-dash lines in Fig. i. In this 
case for (pv) w = 0 we have 

~ (~, O) S = go0~p, ( 2 . 1 )  

and with blowing on the spherically blunted surface the energy conservation condition was 
taken, allowing for the steady solution for a thin porous wall 

~ ( ~ , O ) = X ~ a 4  + ( ~ ) ~ ( 8 ~ p _ 0 i ) .  ( 2 . 2 )  ~ Wp 

We n o t e  t h a t  in  s o l v i n g  t h e  c o u p l e d  p rob lem f o r  a t h e r m a l l y  i n s u l a t i n g  m a t e r i a l  c u r v e s  3 '  
c o i n c i d e  w i t h  v a l u e s  o f  t h e  r a d i a t i v e  e q u i l i b r i u m  t e m p e r a t u r e  Twp. As f o l l o w s  from F i g .  1, 
f o r  (pv)  w = 0 t h e  r e d u c t i o n  o f  t h e  maximum t e m p e r a t u r e  T w in  t h e  v i c i n i t y  o f  t h e  s t a g n a t i o n  
p o i n t  when u s i n g  t h e  h e a t  c o n d u c t i n g  m a t e r i a l  i s  a b o u t  100 K, due t o  t h e  f low o f  h e a t  from t h e  
b l u n t e d  r e g i o n  t o  t h e  c o n i c a l  s e c t i o n  and s u b s e q u e n t  r a d i a t i o n  f rom t h e  s u r f a c e .  An i n -  
c r e a s e  o f  w a l l  t h i c k n e s s  by a f a c t o r  o f  2 ( d o t t e d  l i n e s ,  o b t a i n e d  f o r  t = 500 see  a t  t h e  end 
of  t h e  s t e a d y - s t a t e  r e g i m e )  l e a d s  t o  a d e c r e a s e  o f  Tw(0) by 50 K more,  and t h u s ,  by a c h o i c e  
o f  L/R N we can c o n t r o l  t h e  amount o f  d e c r e a s e  o f  w a l l  t e m p e r a t u r e  in  t h e  b l u n t e d  r e g i o n .  On 
t h e  c o n i e a t  p a r t  o f  t h e  s u r f a c e  f o r  t h e  c o n d u c t i n g  m a t e r i a l  T w i s  n e g l i g i b l y  g r e a t e r  t h a n  
t h e  c o r r e s p o n d i n g  v a l u e  Twp. The s u b s t a n t i a l  d e c r e a s e  o f  w a l l  t e m p e r a t u r e  i s  a c h i e v e d  f o r  
t h e  nomina l  b lowing  t h r o u g h  t h e  p e r m e a b l e  b l u n t i n g .  A t h e r m a l  c u r t a i n  r eg ime  i s  a c h i e v e d  
beh ind  t h e  b lowing  s e c t i o n  and t h e  maximum w a l l  t e m p e r a t u r e s  a r e  r e a c h e d  on t h e  c o n i c a l  s u r -  
f a c e .  The u se  o f  h e a t  c o n d u c t i n g  m a t e r i a l  a l s o  l e a d s  t o  e q u i l i b r a t i o n  o f  t h e  w a l l  t e m p e r a -  
t u r e ,  and h e r e  t h e  h e a t  f l ow o c c u r s  t owards  t h e  s p h e r i e a l l y  b l u n t e d  s e c t i o n  and on t h e  p e r i -  
p h e r a l  p a r t  o f  t h e  cone  t h e  t e m p e r a t u r e  becomes l e s s  t h a n  Twp , in  c o n t r a s t  w i t h  t h e  f low o v e r  
t h e  impermeable  body.  

A c c o r d i n g  t o  t h e  above  n o t a t i o n ,  F i g .  2 shows t h e  dynamics  o f  s u r f a c e  t e m p e r a t u r e  v a r i a -  
t i o n  a t  v a r i o u s  s e c t i o n s  a l o n g  t h e  g e n e r a t o r  ( l i n e s  1-3 f o r  ~ = 0 . 2 ;  0 . 6 7 ;  4) f o r  t h e  l a m i n a r  
f l ow reg ime  (a )  and l a m i n a r  t r a n s i t i o n  t o  t u r b u l e n t  f l ow in t h e  b o u n d a r y  l a y e r  ( b ) .  I t  can 
be seen  t h a t  f o r  t h e  c o n d u c t i n g  m a t e r i a l  t h e r e  i s  a c o n s i d e r a b l e  e x t e n s i o n  o f  t h e  t ime  f o r  
t h e  f low p r o c e s s  t o  come t o  a s t a t i o n a r y  r e g i m e ,  and t h i s  t ime  depends  on t h e  h e a t  f l u x  a l o n g  
t h e  g e n e r a t o r ,  t h e  w a l l  t h i c k n e s s ,  and t h e  t h e r m o p h y s i e a l  p r o p e r t i e s  o f  t h e  m a t e r i a l ,  and i t  
d e c r e a s e s  v e r y  s t r o n g l y  f o r  p o r o u s  b l u n t i n g  in  t h e  p r e s e n c e  o f  gas  b l o w i n g .  
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There is interest in how the heat transfer coefficients behave in the wall heating. 
Figure 3 shows the computed results of the coupled problem in the form of the dependence 

St i [Teo - -  r ~  ([)] qwi ([) ' 

this being the ratio of the heat transfer coefficients at a fixed section ~ to the value at 
time zero for an isothermal surface, on the process time and the surface temperature (Fig. 
3a, b). Figure 3a shows data obtained for ~ = 1.4; 1.7; 4 for a conducting wall (curves 1-3), 
and a nonconducting material (1'-3'). The heat transfer coefficients or the Stanton numbers 
are monotonic, which agrees with the analytical solutions [4, ii], which have shown a depen- 

1 aT w 
dence of St on the temperature factor and the quantity (Te0--Tw) a~ For negative values of 

8Tw/8~ , typical of the geometry considered, St increases at times near the initial value, 
when the surface becomes nonisothermal, and then as 8Tw/8~ decreases and the temperature 
factor increases, St begins to decrease. What has been said above is also illustrated by 
the behavior of St/Sti(Sw) for $ = 1.4 and 4. It can be seen that for thin walls the non- 
monotonic dependence of heat transfer coefficient on surface temperature also occurs on the 
conical surface. This behavior of ~/Cp = qw/(He0 - h w) must be accounted for in solving the 
heating problem in a different formulation with boundary conditions of the third kind, since 
for the known dependences ~/cp(Tw) decreases monotonically with increase of surface tempera- 
ture, which will lead to a decrease of heat flux and wall temperature on the side of the body. 
In this case for threshold values from the gas phase we can use equations [4, ii] constructed 
for the general case of nonisothermal surfaces. 

We now consider further the case of turbulent flow in the boundary layer. Figure 4 
shows the dependences for qw(~), Tw (6) at t = 0,30, 120 sec for a conducting wall (curves 
1-3) and a nonconducting wall (lines 1 and 3' for t = 0, 60 sec). The other symbols and the 
governing parameters coincide with those for Fig. i. As was true for laminar flow, for the 
nonconductinglwall curves 3' coincide with the values of Twp($), and from Figs. 1 and 4 one 
can see a weaker decrease of maximum surface temperature due to flow of heat for the turbu- 
lent regime for (pv) w = 0, due to decrease of surface temperature gradients. However, with 
blowing of coolant, using effects of heat flow in the material, one can noticeably decrease 
the wall temperature in the thermal curtain region behind the blowing section. The use of 
heat conducting material leads to equilibration and monotonic behavior of the temperature of 
the porous spherical wall, and the temperature distribution can be changed by choosing the 
wall thickness (broken lines for L/R N = 0.085). As follows from the calculations, for a non- 
conducting material on the permeable blunted sphere the steady-state regime is established in 
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the first second and the surface temperature equals TWD, which coincides also with the analy- 
2 tical solution, derived from the balance condition at the surface, Eq. (2.), for the given 

heat transfer coefficient from the gas phase. The behavior of the surface temperature of a 
conducting wall on time with gas blowing is shown in Fig. 2b, which also shows the steady 
value Twp at the corresponding sections with respect to ~. From Fig. 2b one can also track 
the change of monotonic behavior of Tw(~) for a conducting wall at different times: from 
a decreasin Z function for (pv) w = 0 to an increasing one in the presence of blowing. 

For the spherically blunted surface isothermal and different blowing intensities we 
developed the relationship in the form of the widely used dependence of a/cp/(~/cp) ~ on (Or)w/ 
(a/cD)~ where (a/Cp) ~ corresponds to the impermeable surface, for various values-of Re. It 
has been shown that if for the experimental conditions of [i0] with Re = 3.872"106 the theo- 
retical and experimental results coincide for various values of ~ in the turbulent flow re- 

gion[7]andisdescribedbytheformulasuggestedin[12] ~ ) = e x p  _0.37~(~)~.], then, 

with decrease of Re for the maxim~ heat flux region near the sonic line there is a noticeable 
decrease of the curves of relative heat transfer coefficient or of relative heat flux as a 
function of the blowing parameter (pV)w/(a/Cp) ~ Thus, with decrease of Re the effectiveness 
of blowing, linked to decrease of heat flux, increases, which should be taken into account in 
evaluating heat flux to a permeable surface with turbulent flow conditions. 
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For gas blowing from a surface Fig. 5 shows the distribution of heat transfer coeffi- 
cients along generators at the same times as for Fig. 4, and the dot-dash curve was obtained 
for the equilibrium surface temperature Twp. It can be seen that if on the permeable spheric- 
ally blunted surface ~/Cp varies insignificantly for the computed temperature distributions 
of a sphere, then in the curtain zone the heat transfer coefficient is decreased very stongly, 
and immediately behind the blowing section there is a different qualitative behavior due to 
the distribution Tw(~) for different wall materials. For the turbulent flow regime Fig. 3b 
shows the ratio St/Sti at the section ~ = 2 (curves 3 and 3') without and with blowing to the 
blunted surface (solid and broken curves). It can be seen that for (pv) w = 0 the curve has 
a weak maximum, due to the nonisothermal behavior of the wall temperature, and agrees quali- 
tatively with values computed for laminar flow. With gas blowing the dependence St/Sti(Sw) 
is monotonically decreasing for different wall materials. It is important to note that the 
computed behavior of the wall temperature in the curtain zone leads to very strong differ- 
ences in heat transfer coefficient compared with the case of an isothermal surface. For in- 
stance, the dotted curve 3 (Fig. 3b) illustrates the behavior of St/St~(ew) with parametric 
variation of the surface temperature Tw(g) = const and may exceed the results of solving the 
coupled problem by more than a factor of 2. Thus, compared with the isothermal wall case, 
in solving the heating problem due to choice of wall thickness and wall material of the coni- 
cal section one can obtain added substantial gain in reducing heat flux in the curtain zone 
due to the formation of Tw(g) and decrease of the heat transfer coefficient. These conclu- 
sions conform with the analysis conducted on the influence of an isothermal wall temperature 

t aT~ 
[ii, 13], since the heat transfer coefficients decrease for a positive value of 

(T~o--T~) ~ '  
typical of the thermal curtain section. 

As one would expect an increase of coolant gas flow rate decreases the temperature of 
the blunted and conical sections of the body. Figure 4 shows the distribution along the 
generators of the equilibrium radiative temperature Twp (curve 4') and the temperature T w 
(line 4) corresponding to stationary conditions at t = i00 sec in flow over a conducting wall, 
for a mass flow rate of (or) w = 3.25 kg/(m2.sec), with the other governing parameters having 
their previous values. For the nonconducting spherically blunted wall the maximum tempera- 
ture reaches 311 K, and in the thermal curtain zone the greatest decrease of T w in choosing 
a conducting material is more than i00 K. We note that for the given values of (pv) w the 
total mass flow rate of coolant gas is 0.048 kg/sec. This establishes that one can achieve 
thermal protection by blowing for the process times considered up to the end of the steady- 
state conditions. 

Thus, in this paper we have illustrated the influence of heat flow and surface gas blow- 
ing on the heat transfer characteristics, which can be used when interpreting data of an aero- 
dynamic experiment. We note that the conclusion that one must account for heat flow along 
the model surface when the heat flux depends appreciably on the longitudinal coordinate was 
reached in [14], where an approach was suggested, based on analysis of experimental results 
for computing the influence of heat flow, and formulas were obtained for evaluating the errors 
due to neglecting this. The question of computing heat flow is relevant in creating heat 
flux sensors with long measurement time, allowing reduced cost of tests by conducting the 
experiments under varying conditions. One source of error in determining heat flux in this 
case also is heat flux along the wall, which one should account for in developing the sensor 
structure, the nominal model, and the method of recovering the surface heat flux. As was 
shown above, these questions, relating to accounting for heat flux along the model, the non- 
isothermal nature of the model surface, and the influence of these factors on the heat trans- 
fer coefficients can be resolved by solving the problem in the coupled formulation. 
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